The study demonstrates the potential of an optical nose made by depositing an array of fluorescent nanomaterials on a paper substrate for the early detection of leukemia in adults. This is based on the fact that blood volatile organic compounds (VOCs) are useful leukemia biomarkers. The integrated design was miniaturized and comprised both sensing zones and a sample holding zone, which were installed on a small sheet of paper within a miniature cubic reaction chamber fabricated by using 3D printing technology. The sensing device, comprising seven fluorescent sensing elements, namely, metal nanoclusters, quantum dots, and carbon dots was capable of detecting VOCs in the blood headspace and providing a colorimetric signature that could discriminate between blood samples from healthy and cancerous individuals. A total of 70 new leukemia cases and 51 healthy controls aged 20-50 years were studied. The device required a 60 μL portion of the blood sample and reacted to blood VOCs after 3 h when kept at 50 °C. The imaging data from the device was processed by linear discriminant analysis, and the results confirmed efficient identification of patient samples from healthy samples with 100% accuracy. Overall, the array system is noninvasive (or minimally invasive), portable, fast, inexpensive, and requires only a small amount of blood sample.
Read full abstract