Optical network security is attracting increasing research attention, as loss of confidentiality of data transferred through an optical network could impact a huge number of users and services. Data encryption is an effective way to enhance optical network security. In particular, QKD is being investigated as a secure mechanism to provide keys for data encryption at the endpoints of an optical network. In a QKD-enabled optical network, apart from TDChs, two additional channels, called QSChs and PIChs, are required to support secure key synchronization. How to allocate network resources to QSChs, PIChs, and TDChs is emerging as a novel problem for the design of a security-guaranteed optical network. This article addresses the resource allocation problem in optical networks secured by QKD. We first discuss a possible architecture for a QKD-enabled optical network, where an SDN controller is in charge of allocating the three types of channels (TDCh, QSCh, and PICh) over different wavelengths exploiting WDM. To save wavelength resources, we propose to adopt OTDM to allocate multiple QSChs and PIChs over the same wavelength. An RWTA algorithm is designed to allocate wavelength and time slot resources for the three types of channels. Different security levels are included in the RWTA algorithm by considering different key updating periods (i.e., the period after which the secure key between two endpoints has to be updated). Illustrative simulation results show the effects of different security-level configuration schemes on resource allocation.