Abstract

In this paper, a scheme to realize unclonable physical-layer security key generation and distribution (PL-SKGD) based on historical fiber channel state information (HFCSI) is proposed. PL-SKGD schemes based on channel characteristics for enhancing the physical-layer security of optical networks have been proposed in recent years. However, there are potential disadvantages in these schemes, such as 1) low key generation rate (KGR): the slow frequency of the analog waveform change of the channel characteristic leading to low KGR; 2) incompatibility with existing infrastructure: active scrambling to increase the frequency of channel characteristic changes, or tracking changes of channel characteristics requires additional devices; 3)easy to be cloned: all of the optical channel state information is reflected in the signal transmitted inside the fiber, which makes it easy to reproduce by illegal eavesdropper through features analysis and other methods. In order to solve the above problems, a PL-SKGD scheme is designed which uses the chain structure composed of long short-term memory neural network (LSTM-NN) units to learn and store the unique mapping relationship between historical channel time series and provides unclonability based on the fundamental fact that the eavesdropper Eve can never obtain the full HFCSI. The simulation conducted in a quadrature phase shift keying point-to-point optical link system verified successfully that KGR = 0.82 Gbit/s error-free SKGD. The loss function of LSTM-NN drops sharply in the early stages of training and remains a small value. The security of the SKGD system is analyzed, which effectively improves the unclonability of the system. Finally, it is verified that the optimal fiber channel length for error-free SKGD of the proposed scheme is 150 km considering the error correction capability of information reconciliation and weighing key sequence error rate and valid bit generation rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call