Electrochromic (EC)battery technology shows great potential in future "zero-energy building" by controlling outdoor solar transmission to tune heat gain as well as storing the consumed energy to reuse across other building systems. However, challenges still exist in exploring an electrochemical system to satisfy requirements on both ultra-long optical memory (also called bistability) without continuous power supply and high energy density. Herein, an ECbattery is proposed to demonstrate ultra-long bistability (>760h) based on the reversible deposition and dissolution of manganese oxide (MnO2) without the addition of any mediators. A porous low-barrier hydroxylated titanium dioxide (TiO2) interface is incorporated to synergistically enrich Mn2+-affinity active sites for deposition and effectively reduce the electron transport barrier of MnO2 for dissolution, thereby significantly improving the reversibility, high optical modulation (60.2% at 400nm), and energy density (352mAhm-2). The modification strategy is also verified on the cathode-less button cells with a much higher average coulombic efficiency (99.9%) compared to the batteries without the porous hydroxylated TiO2 interface (74.6%). These achievements lay a foundation for advancements in both electrochromism and Zn-Mn aqueous batteries.
Read full abstract