The optical lever is a centuries old and widely used detection technique employed in applications ranging from consumer products and industrial sensors to precision force microscopes used in scientific research. However, despite the long history, its quantum limits have yet to be explored. In general, any precision optical measurement is accompanied by optical force induced disturbance to the measured object (termed as back action) leading to a standard quantum limit (SQL). Here, we give a simple ray optics description of how such back action can be evaded in optical lever detection. We perform a proof-of-principle experiment demonstrating the mechanism of back action evasion in the classical regime, by developing a lens system that cancels extra tilting of the reflected light off a silicon nitride membrane mechanical resonator caused by laser-pointing-noise-induced optical torques. We achieve a readout noise floor two orders of magnitude lower than the SQL, corresponding to an effective optomechanical cooperativity of 100 without the need for an optical cavity. As the state-of-the-art ultralow dissipation optomechanical systems relevant for quantum sensing are rapidly approaching the level where quantum noise dominates, simple and widely applicable back action evading protocols will be crucial for pushing beyond quantum limits.
Read full abstract