Abstract

The conventional optical lever detection technique involves optical components and their precise mechanical alignment. An additional technical limit is the weight of the optical system in cases where a top-scanner is used with high-speed and high-precision metrology. An alternative represents the application of self-actuated atomic force microscopy (AFM) cantilevers with integrated two-dimensional electron gas (2-DEG) piezoresistive deflection sensors. A significant improvement in the performance of such cantilevers with respect to deflection sensitivity and temperature stability has been achieved by using an integrated Wheatstone bridge configuration. Due to employing effective crosstalk isolation and temperature drift compensation, the performance of these cantilevers was significantly improved. In order to enhance the speed of AFM measurements, we present an adaptive scanning speed procedure. Examples of AFM measurements with a high scanning speed (up to 200 lines/s) committed to advanced lithography process development are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.