Rugate filters are thin-film optical interference coatings with sinusoidal variation of the refractive index. Several of these filters were fabricated with glancing angle deposition, which exploits atomic competition during growth to create nanoporous materials with controllable effective refractive index. This method enables the fabrication of devices with almost arbitrary refractive index profiles varying between the ambient, 1.0, and the index of the film material, in this case silicon with an index of 4.0 (at 600 nm). As these filters are inherently porous, oxidation of the silicon can occur throughout the device layer, and here we study the intentional oxidation of silicon filters by high-temperature reaction with gaseous oxygen. We find that a significant portion of the silicon filter oxidizes in approximately 10 min when heated to 600 degrees C-650 degrees C in an oxygen environment; oxidation then continues slowly over several hours. The presence of water vapor has little apparent effect on the oxidation reaction, and attempts to oxidize with ozone at room temperature were unsuccessful. As silicon filters oxidize to become silica, spectral blueshifts and increased short-wavelength transmittance are observed. Measured and calculated transmittance spectra generally agree, although the lack of absorption and dispersion in the theoretical model limits detailed comparison.
Read full abstract