This article introduces a method to extract the speed and density of microparticles in real time at several kHz using an asynchronous event-based camera mounted on a full-field optical coherence tomography (FF-OCT) setup. These cameras detect significant amplitude changes, allowing scene-driven acquisitions. They are composed of an array of autonomously operating pixels. Events are triggered when an illuminance change at the pixel level is significant at 1μs time precision. The event-driven FF-OCT algorithm relies on a time-based optical flow computation to operate directly on incoming events and updates the estimation of velocity, direction and density while reducing both computation and data load. We show that for fast moving microparticles in a range of 0.4 - 6.5mm/s, the method performs faster and more efficiently than existing techniques in real time. The target application of this work is to evaluate erythrocyte dynamics at the microvascular level in vivo with a high temporal resolution.
Read full abstract