In this paper, we propose a new multicast scheme called tree-shared multicasting (TS-MCAST) in optical burst-switched wavelength-division-multiplexing networks, taking into consideration overheads due to control packets and guard bands (GBs) associated with data bursts. In TS-MCAST, multicast traffic belonging to multiple multicast sessions from the same source-edge node to possibly different destination-edge nodes can be multiplexed together in a data burst, which is delivered via a shared multicast tree. To support TS-MCAST, we propose three tree-sharing strategies based on equal coverage, super coverage, and overlapping coverage, and present a simple shared multicast tree-construction algorithm. For performance comparison, we consider two other multicast schemes: separate multicasting (S-MCAST) and multiple unicasting (M-UCAST). We show that TS-MCAST outperforms S-MCAST and M-UCAST in terms of bandwidth consumed and processing load (i.e., number of control packets) incurred for a given amount of multicast traffic under the same unicast traffic load with static multicast sessions and membership.
Read full abstract