While pathogens can be deadly to humans, many of them cause a range of infection types with non-lethal phenotypes. Candida albicans, an opportunistic fungal pathogen of humans, is the fourth most common cause of nosocomial infections which results in ~40% mortality. However, other C. albicans infections are less severe and rarely lethal and include vulvovaginal candidiasis, impacting ~75% of women, as well as oropharyngeal candidiasis, predominantly impacting infants, AIDS patients and cancer patients. While murine models are most frequently used to study C. albicans pathogenesis, these models predominantly assess host survival and are costly, time consuming, and limited in replication. Therefore, several mini-model systems, including Drosophila melanogaster, Danio rerio, Galleria mellonella, and Caenorhabditis elegans, have been developed to study C. albicans. These mini-models are well-suited for screening mutant libraries or diverse genetic backgrounds of C. albicans. Here we describe two approaches to study C. albicans infection using C. elegans. The first is a fecundity assay which measures host reproduction and monitors survival of individual hosts. The second is a lineage expansion assay which measures how C. albicans infection affects host population growth over multiple generations. Together, these assays provide a simple, cost-effective way to quickly assess C. albicans virulence.
Read full abstract