Bioreactor-cultured adventitious roots (ARs) of the endangered medicinal plant Oplopanax elatus Nakai is a novel alternative plant material. To utilize ARs in the product production, the present study investigated the anti-inflammatory effect of O. elatus ARs. In the in vivo experiment, lipopolysaccharide (LPS)-induced acute lung injury disease model was established and several inflammatory indexes were determined. For the LPS-stimulated mice, after pretreatment of AR crude extract (200mg/kg), cell infiltration in lungs was decreased, the production of proinflammatory mediators, including nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, and 1β in the bronchoalveolar lavage fluid was evidently reduced, which indicated that O. elatus ARs had an anti-inflammatory effect. In the in vitro experiment, ethyl acetate (EtOAc) fractions (12.5, 25, and 50μg/mL) were used to treat LPS-induced peritoneal macrophages (PMs) of mice. The production of NO, prostaglandin E2, TNF-α, IL-6, and IL-1β in LPS-stimulated PMs was obviously inhibited (p < 0.05) after pretreatment with EtOAc fractions, and the expression of the inducible nitric oxide synthase and cyclooxygenase were also suppressed. To clarify the anti-inflammatory mechanism, effects of EtOAc fraction on changes of proteins related to the pathways of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) were investigated. The phosphorylation of extracellular regulated protein kinases, c-jun n-terminal kinase, and p38 MAPK in LPS-induced PMs was inhibited after pretreatment of EtOAc fractions. In addition, EtOAc fractions enhanced inhibitor of nuclear factor-kappa B-α expression and decreased nuclear translocation of p65 NF-κB. Thus, EtOAc from O. elatus ARs is involved in regulating MAKP and NF-κB signaling pathways to inhibit LPS-induced inflammation.
Read full abstract