The organization of estrogenic signaling in the CNS is exceedingly complex. It is comprised of peripherally and centrally synthesized estrogens, and a plethora of types of estrogen receptor that can localize to both the nucleus and the plasma membrane. Moreover, CNS estrogen receptors can exist independent of aromatase (aka estrogen synthase) as well as oligomerize with it, along with a host of other membrane signaling proteins. This ability of CNS estrogen receptors to either to physically pair or exist separately enables locally produced estrogens to act on multiple spatial levels, with a high degree of gradated regulation and plasticity, signaling either in-phase or out-of phase with circulating estrogens. This complexity explains the numerous contradictory findings regarding sex-dependent pain processing and sexually dimorphic opioid antinociception. This review highlights the increasing awareness that estrogens are major endogenous arbiters of both opioid analgesic actions and the mechanisms used to achieve them. This behooves us to understand, and possibly intercede at, the points of intersection of estrogenic signaling and opioid functionality. Factors that integrate estrogenic actions at subcellular, synaptic, and CNS regional levels are likely to be prime drug targets for novel pharmacotherapies designed to modulate CNS estrogen-dependent opioid functionalities and possibly circumvent the current opioid epidemic.