The paper introduces a novel method for creating a photographic map of the seabed using images captured by the on-board photo and video systems of autonomous underwater vehicles (AUVs) during various missions, while incorporating navigation parameters. Additionally, it presents a new approach for storing this photo map on the on-board device in a mosaic format (tiles), which significantly accelerates operational visual inspection by enabling the automatic search and recognition of underwater objects that may exceed the coverage area of a single photograph. This capability is achieved by organizing the photo map into layers with varying zoom levels. Semi-natural experiments were conducted with data from actual missions using the real underwater vehicle demonstrate the high efficiency of the proposed method and algorithm. Unlike existing methods that form photo maps after the underwater vehicle has taken pictures of the bottom using special high-performance computers, the developed method forms a photo map directly during the movement of the vehicle, using only the computing power of the on-board computer. In addition, in the event of accidents, when it is necessary to detect objects of interest on the seabed as quickly as possible, it is necessary to provide a quick visual inspection of the generated photo map. For this purpose, we have developed an algorithm for saving a photo map in the form of a mosaic, which is widely used in interactive geographic maps, such as Google Maps. This algorithm differs from existing methods in that it selectively saves data to the on-board storage device to reduce the number of read and write operations, thus ensuring the timely operation of the entire process of creating a photo map at a given frequency of photography. After the generated map has been stored as a mosaic and a high-speed connection with the vehicle has appeared, the operator can immediately view the entire generated map using a regular web browser.
Read full abstract