Seismic inversion has become almost routine in quantitative 3D seismic interpretation. To ensure the quality of the seismic inversion, the input seismic data need to have a high signal-to-noise ratio. With the current low oil price environment, seismic reprocessing is often preferred over reacquisition to improve data quality. Common filter pairs include forward and inverse [Formula: see text]-[Formula: see text] and Radon transforms. Forward and inverse migrations (i.e., migration and demigration) are a more recently introduced transform pair that, when used together in an iterative workflow, results in a least-squares migration algorithm. Least-squares migration compensates for surface variation in data density and, when combined with a filter applied to prestack migrated images, suppresses the operator and data aliasing. We apply a least-squares migration workflow to a fractured-basement data set from the Texas Panhandle to demonstrate the enhancement in signal-to-noise ratio, the reduction in acquisition footprint and migration artifacts, and the improvement in the P-impedance inversion result.