<div>Efficient fire rescue operations in urban environments are critical for saving lives and reducing property damage. By utilizing connected vehicle systems (CVS) for firefighting vehicles planning, we can reduce the response time to fires while lowering the operational costs of fire stations. This research presents an innovative nonlinear mixed-integer programming model to enhance fire rescue operations in urban settings. The model focuses on expediting the movement of firefighting vehicles within intricate traffic networks, effectively tackling the complexities associated with collaborative dispatch decisions and optimal path planning for multiple response units. This method is validated using a small-scale traffic network, providing foundational insights into parameter impacts. A case study in Sioux Falls shows its superiority over traditional “nearest dispatch” methods, optimizing both cost and response time significantly. Sensitivity analyses involving clearance speed, clearance time, minimum rescue force, and fire loss parameters contribute to the enhancement of urban fire rescue operations and the refinement of practical decision support systems.</div>
Read full abstract