Abstract
Drones have a wide range of applications in urban environments as they can both enhance people's daily activities and commercial activities through various operations and deployments. With the increasing number of drones, flight safety and efficiency become the main concern, and effective drone operations can make a difference. Accordingly, 4D path planning for drone operations is the focus of this paper, and the swarm-based method is proposed to solve this complicated optimization problem. Under the framework of ‘AirMatrix’, the problem is solved in two levels, i.e., 3D path planning for a single drone and conflict resolution among drones. In the multi-path planning level, multiple alternative flight paths for each drone are generated to increase the acceptance rate of a flight request. The constraints on a single flight path and two different flight paths are considered. The goal is to obtain several different short flight paths as alternatives. A clustering improved ant colony optimization CIACO) algorithm is employed to solve the multi-path planning problem. The crowding mechanism is used in clustering, and some improvements are made to strengthen the global and local search ability in the early and later phases of iterations. In the task scheduling level, the conflicts between two drones are defined in two circumstances. One is for the time interval of passing the same path point, another one is for the right-angle collision between two drones. A three-layer fitness function is proposed to maximize the number of permitted flights according to the safety requirement, in which the airspace utilization and the operators’ requests are both considered. A ‘cross-off’ strategy is developed to calculate the fitness value, and a ‘distributed-centralized’ strategy is applied considering the task priorities of drones. A genetic algorithm GA)-based task scheduling algorithm is also developed according to the characteristic of the established model. Simulation results demonstrate that 4D flight path of each drone can be generated by the proposed swarmed-based algorithms, and safe and efficient drone operations in a specific airspace can be ensured.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.