Intraoperative electron beam radiotherapy is increasingly performed using mobile linac delivering therapeutic radiation doses in unshielded operating rooms. While no special neutron-shielding problem should arise for operation at 10 MeV or less, it is not clear whether this holds true for operation at higher energies. This paper reports the measured neutron production from a Mobetron mobile electron linac, operated at 12 MeV, and compares the results with those from a conventional linac, also operated at 12 MeV in electron mode. Neutron leakage measurements were performed by means of passive bubble detectors in the scattering foil, patient and floor planes. Neutron dose equivalent rates per unit of electron dose delivered by the Mobetron at its normal treatment distance (50 cm SSD) were 0.33 µSv Gy−1 at the accelerator head, 0.18 µSv Gy−1 in the patient plane at 15 cm from the beam axis and 0.31 µSv Gy−1 at the floor plane, on the beam axis and under the beam stopper. For a weekly workload of 250 Gy, the weekly neutron dose equivalents at 12 MeV for the Mobetron at a distance of 300 cm from the scattering foil were 14.3 and 1.7 µSv/week for floor below and adjoining areas on the same floor, respectively. Neutron dose equivalent rates generated from Mobetron are at least one order of magnitude lower than ones produced by a conventional linac operated at the same energy in electron mode. Mobetron can be used at 12 MeV in an unshielded operating room for a weekly workload of up to 250 Gy if the bremsstrahlung x-rays are shielded to negligible levels.