This study presents a new method for sustainable cooling systems using a hybrid refrigeration system powered by hybrid renewable energy sources. The system comprises a modular unit of vertical wind turbines integrated with bio-photovoltaic films to provide sustainable energy. The hybrid refrigeration system combines evaporative and solar thermal-driven adsorption cooling systems. In addition, a finite volume of soil is proposed for thermal energy storage. Experimental data inform the development of a digital twin for an integrated system, soil thermophysical characteristics, wind turbine performance, and technical specifications for other system components. This sustainable cooling package is cost-effective and space-efficient, particularly in remote or off-grid locations. Notably, the evaporative cooler and chilled water coil contribute to a cooling effect of 20.4 kW, and solar power generation reaches 12.38 kW at an intensity of 1053 W/m2. The annual electrical output averages 1.7 kW at a wind speed of 3.5 m/s. Under best conditions, wind power can surge to 7.99 kW at 9.88 m/s. The ratio of power generated by wind to solar energy ranges from 1.1 to 1.3. The system effectively meets a peak thermal energy demand of approximately 74 GJ/month, facilitated by solar collectors, underground thermal storage, and a renewable energy-fed auxiliary heater. This study paves the way for future techno-economic optimisation and advancements in sustainable energy solutions for remote cold storage facilities.
Read full abstract