This study evaluates the cytotoxic and genotoxic effects of PM2.5 collected from an open-cast coal mining area in northern Colombia. Cyclohexane (CH), dichloromethane (DCM), and acetone (ACE) extracts were obtained using Soxhlet extraction to isolate compounds of different polarities. Human lymphocytes were exposed to the extracted compounds, and cytotoxicity and genotoxicity were assessed using the cytokinesis block micronucleus (CBMN) and comet assays, incorporating FPG and ENDO III enzymes to detect oxidative DNA damage. Chemical analysis revealed that the organic fractions consisted mainly of modified hydrocarbons and volatile organic compounds. The CBMN assay showed a significant increase in micronuclei in binucleated (MNBN) and mononucleated (MNMONO) cells and nucleoplasmic bridges (NPB) in exposed lymphocytes. The comet assay revealed substantial oxidative DNA damage, particularly with the ACE extract, which significantly increased oxidized purines and pyrimidines. DCM induced similar effects, while CH showed moderate effects. CREST immunostaining revealed aneugenic activity, particularly in cells exposed to ACE and DCM extracts. These results suggest that polar fractions of PM2.5, likely containing metals and modified PAHs, contribute to DNA damage and chromosomal instability. The study highlights the need to monitor the composition of PM2.5 in mining regions to implement stricter environmental policies to reduce exposure and health risks.
Read full abstract