As building owners, designers, and operators aim to achieve significant reductions in overall energy consumption, understanding and evaluating the probable impacts of occupant behavior becomes a critical component of a holistic energy conservation strategy. This becomes significantly more pronounced in ultra-efficient buildings, where system loads such as heating, cooling, lighting, and ventilation are reduced or eliminated through high-performance building design and where occupant behavior-driven impacts reflect a large portion of end-use energy. Further, variation in behavior patterns can substantially impact the persistence of any performance gains. This paper describes a methodology of building occupant behavior modeling using simulation methods developed by the Building Energy Research Center (BERC) at Tsinghua University using measured energy consumption data collected by the University of Washington Integrated Design Lab (UW IDL). The Bullitt Center, a six-story 4831 m2 (52,000 ft2) net-positive-energy urban office building in Seattle, WA, USA, is one of the most energy-efficient buildings in the world (2013 WAN Sustainable Building of the Year Winner). Its measured energy consumption in 2015 was approximately 34.8 kWh/(m2∙yr) (11 kBtu/(ft2∙yr)). Occupant behavior exerts an out-sized influence on the energy performance of the building. Nearly 33% of the end-use energy consumption at the Bullitt Center consists of unregulated miscellaneous electrical loads (plug-loads), which are directly attributable to occupant behavior and equipment procurement choices. Approximately 16% of end-use energy is attributable to electric lighting which is also largely determined by occupant behavior. Key to the building’s energy efficiency is employment of lighting controls and daylighting strategies to minimize the lighting load. This paper uses measured energy use in a 330 m2 (3550 ft2) open office space in this building to inform occupant profiles that are then modified to create four scenarios to model the impact of behavior on lighting use. By using measured energy consumption and an energy model to simulate the energy performance of this space, this paper evaluates the potential energy savings based on different occupant behavior. This paper describes occupant behavior simulation methods and evaluates them using a robust dataset of 15 minute interval sub-metered energy consumption data. Lighting control strategies are compared via simulation results, in order to achieve the best match between occupant schedules, controls, and energy savings. Using these findings, we propose a simulation methodology that incorporates measured energy use data to generate occupant schedules and control schemes with the ultimate aim of using simulation results to evaluate energy saving measures that target occupant behavior.
Read full abstract