Advances in experimental and theoretical work increasingly suggest that parasite interactions within a single host can affect the spread and severity of wildlife diseases. Yet empirical data to support predicted co-infection patterns are limited due to the practical challenges of gathering convincing data from animal populations and the stochastic nature of parasite transmission. Here, we investigated co-infection patterns between micro- (bacteria and protozoa) and macroparasites (gastro-intestinal helminths) in natural populations of the multimammate mouse (Mastomys natalensis). Fieldwork was performed in Morogoro (Tanzania), where we trapped 211 M. natalensis and tested their behaviour using a modified open-field arena. All animals were checked for the presence of helminths in their gastro-intestinal tract, three bacteria (Anaplasma, Bartonella, and Borrelia) and two protozoan genera (Babesia and Hepatozoon). Besides the presence of eight different helminth genera (reported earlier), we found that 19% of M. natalensis were positive for Anaplasma, 10% for Bartonella, and 2% for Hepatozoon species. Hierarchical modelling of species communities was used to investigate the effect of the different host-related factors on these parasites’ infection probability and community structure. Our results show that the infection probability of Bartonella increased with the host's age, while the infection probability of Anaplasma peaked when individuals reached adulthood. We also observed that less explorative and stress-sensitive individuals had a higher infection probability with Bartonella. Finally, we found limited support for within-host interactions between micro-and macroparasites, as most co-infection patterns could be attributed to host exposure time.