Consistency of pituitary macroadenomas is a key determinant in surgical outcomes, with non-soft consistency linked to more complications and incomplete resections. This study aimed to develop a machine learning model to predict the consistency of pituitary macroadenomas to improve surgical planning and outcomes. A retrospective study of patients with pituitary macroadenomas was conducted. Data included brain magnetic resonance imaging findings (diameter and apparent diffusion coefficient), patient demographics (age and sex), and tumor consistency. Seventy patients were evaluated, 59 with soft consistency and 11 with non-soft consistency. The support vector machine (SVM) was the best model with ROC AUC score of 83.3% [95% CI 65.8, 97.6], AP AUC of 69.8% [95% CI 41.3, 91.1], sensitivity of 73.1% [95% CI 44.4, 100], specificity of 89.8% [95% CI 82, 96.7], F1 score of 0.63 [95% CI 0.36, 0.83], and Matthews correlation coefficient score of 0.57 [95% CI 0.29, 0.79]. These findings indicate a significant improvement over random classification, as confirmed by a permutation test (p < 0.05). Additionally, the model had a 67.4% probability of outperforming the second-best model in cross-validation, as determined through Bayesian analysis, and demonstrated statistical significance (p < 0.05) compared to non-ensemble models. Using explainability heuristics, both 2D and 3D probability maps highlighted areas with a higher probability of non-soft consistency. The attributes most influential in the correct classification by our best model were male sex and age ≤ 42.25years. Despite some limitations, the SVM model showed promise in predicting tumor consistency, which could aid in surgical planning. To address concerns about generalizability, we have created an open-access repository to promote future external validation studies and collaboration with other research centers, with the goal of enhancing model prediction through transfer learning.
Read full abstract