Low ovarian putrescine levels and decreased peak values following luteinising hormone peaks are related to poor oocyte quantity and quality in ageing women. To investigate the effects of putrescine supplementation in in vitro maturation (IVM) medium on oocyte quality and epigenetic modification. Germinal vesicle oocytes retrieved from the ovaries of 8-week-old and 9-month-old mice were divided into four groups (the young, young+difluoromethylornithine (DFMO), ageing and ageing+putrescine groups) and cultured in IVM medium with or without 1mM putrescine or DFMO for 16h. The first polar body extrusion (PBE), cleavage and embryonic development were evaluated. Spindles, chromosomes, mitochondria and reactive oxygen species (ROS) were measured. The expression levels of SIRT1, H3K9ac, H3K9me2, H3K9me3, and 5mC levels were evaluated. Sirt1 and imprinted genes were detected. The PBE was higher in the ageing+putrescine group than in the ageing group. Putrescine increased the total and inner cell mass cell numbers of blastocysts in ageing oocytes. Putrescine decreased aberrant spindles and chromosome aneuploidy, increased the mitochondrial membrane potential and decreased ROS levels. Putrescine increased SIRT1 expression and attenuated the upregulation of H3K9ac levels in ageing oocytes. Putrescine did not affect 5mC, H3K9me2 or H3K9me3 levels or imprinted gene expression. Putrescine supplementation during IVM improved the maturation and quality of ageing oocytes and promoted embryonic development by decreasing ROS generation, maintaining mitochondrial and spindle function and correcting aberrant epigenetic modification. Putrescine shows application potential for human-assisted reproduction, especially for IVM of oocytes from ageing women.
Read full abstract