The Plenus Cold Event (PCE) temporarily interrupted the supergreenhouse conditions exacerbated during much of the Cenomanian–Turonian Oceanic Anoxic Event 2 (OAE 2). The PCE is coeval to the occurrence of Boreal benthic macroinvertebrates and of the nektonic belemnite Praeactinocamax plenus (after which the event is named) in Europe, and to the re-oxygenation of bottom waters in the Northern Hemisphere. However, its effects on the sea-surface circulation are unknown and evidence for changes in the biogeography of planktonic organisms are limited to the equatorward migration of the dinoflagellate cysts grouped in the Cyclonephelium compactum–membraniphorum morphological plexus. This study presents new planktonic foraminiferal quantitative data from two complete OAE 2 records of the Anglo-Paris (Eastbourne, SE England) and Vocontian (Clot Chevalier, SE France) basins that registered the equatorward pulse of Boreal macroinvertebrates during the PCE and have been extensively studied for bio- and chemostratigraphy. At the onset of OAE 2 (before the PCE), planktonic foraminifera are mainly represented by oligo-mesotrophic Tethyan taxa (rotaliporids and whiteinellids) in both localities, but this assemblage is sharply replaced by cold and meso-to-eutrophic species (praeglobotruncanids, dicarinellids and muricohedbergellids) during the PCE. The cold-water assemblage shows strong affinities with the coeval fauna of the Norwegian Sea and yields the Boreal endemic species Muricohedbergella kyphoma and Praeglobotruncana plenusiensis . This observation combined with previously published data collected in other localities of the Northern Hemisphere and on other fossil groups suggests a ~20° equatorward expansion of the Boreal marine bioprovince during the PCE. Moreover, contrarily to the nektonic belemnitellids that were able to move independently of ocean circulation, planktonic organisms are passively transported by currents and changes in the planktonic foraminiferal assemblages documented in the Anglo-Paris and Vocontian basins have been interpreted to reflect the transition from a dominant influence of warm, saline, and thermally stratified waters carried by the proto-Gulf Stream before the PCE to cold and low-saline Boreal waters originated in the Norwegian Sea during the PCE. We suggest that such changes were forced by the equatorward shift of the proto-Arctic Front (i.e., the boundary between warm saline Tethyan-Atlantic and cold low-saline Boreal waters) from offshore Norway to Southern England. In this southerly position, the proto-Arctic Front represented an oceanographic barrier that limited the influence of the proto-Gulf Stream in the Anglo-Paris Basin, and favored the inflow of Boreal waters from the North to the European epicontinental basins. The sea-surface cooling and equatorward expansion of Boreal planktonic assemblages during the PCE are of the same order of magnitude of those reconstructed between some glacial and interglacial intervals of the Plio-Pleistocene. Despite obvious differences between Cretaceous and Plio-Pleistocene paleogeography and climate dynamics, this study reviews the extent of environmental changes occurred during the PCE, provides evidence for a profound re-organization of the sea-surface circulation patterns and a more comprehensive overview of the equatorward migration of Boreal marine communities in the Northern Hemisphere. • Planktonic foraminiferal quantitative abundances across OAE 2 are provided for Eastbourne and Clot Chevalier. • Rotalipora and Whiteinella dominate the assemblages at the onset of OAE 2 and after the Plenus Cold Event (PCE). • Praeglobotruncana, Dicarinella and Muricohedbergella increase their abundance during the PCE • The assemblage of the PCE interval shows many affinities with the coeval Boreal fauna of the Norwegian Sea. • The biogeography of Boreal taxa and the proto-Arctic Front shifted equatorward of ~20° from the onset of OAE 2 to the PCE. • The shift of the proto-Arctic Front limited the inflow of the proto-Gulf Stream and favored that of Boreal waters in Europe.
Read full abstract