The performance of random forest (RF) based satellite attitude control system (ACS) fault diagnosis methods is limited by uninformative features in high-dimensional data. To solve this problem, we proposed a feature-weighted random forest with Boruta (FWRFB) based fault diagnosis method is proposed for fault diagnosis of ACSs. Firstly, a Boruta feature selection algorithm is used to obtain a feature set and determine significant feature weights. Subsequently, a novel feature-weighted random forest (FWRF) algorithm is designed, which utilizes feature-weighted random sampling instead of simple random sampling to generate feature subsets in the RF. The FWRFB effectively utilizes the feature information while mitigating noise interference. Finally, a FWRFB-based diagnostic module is developed for online fault diagnosis of ACSs. The effectiveness of the proposed method is verified by the ACS data from a semi-physical simulation platform.