Novel 2-amino-4-methyl-6-phenyl-benzene-1,3-dicarbonitrile derivatives were proposed as photosensitizes of iodonium salt for a highly effective bimolecular photoinitiating system upon soft irradiation conditions under long-wave ultraviolet (UV-A) and visible light. Remarkably, these structures are highly versatile, allowing access to photoinitiating systems for the free-radical polymerization of acrylates, the cationic photopolymerization of epoxides, glycidyl, and vinyl ethers, the synthesis of interpenetrated polymer networks (IPNs) and the thiol-ene photopolymerization processes. Excellent polymerization profiles for all of the monomers, along with the high final conversions, were obtained. The initiation mechanisms of these bimolecular systems based on the 2-amino-4-methyl-6-phenyl-benzene-1,3-dicarbonitrile derivatives were investigated using the real-time FT-IR technique, steady-state photolysis, fluorescence experiments, theoretical calculations of molecular orbitals, and electrochemical analysis. Moreover, the 2-amino-4-methyl-6-phenyl-benzene-1,3-dicarbonitrile derivatives were investigated as a type II free-radical photoinitiator with amine. It was confirmed that the 2-amino-4-methyl-6-phenyl-benzene-1,3-dicarbonitrile derivatives, in combination with different types of additives, e.g., amine as co-initiator or in the presence of onium salt, can act as a bimolecular photoinitiating system via the photo-reduction or photo-oxidation pathways, respectively.
Read full abstract