CCR4-NOT regulates multiple steps in gene regulation, including transcription, mRNA decay, protein ubiquitylation, and translation. It has been well studied in budding yeast; however, relatively less is known about its regulation and functions in mammals. To characterize the functions of the human CCR4-NOT complex, we developed a rapid auxin-induced degron system to deplete CNOT1 (the scaffold of the complex) and CNOT4 (E3 ubiquitin ligase) in cell culture. Transcriptome-wide measurements of gene-expression revealed that depleting CNOT1 changed several thousand transcripts, wherein most mRNAs were increased and resulted in a global decrease in mRNA decay rates. In contrast to what was observed in CNOT1-depleted cells, CNOT4 depletion only modestly changed RNA steady-state levels and, surprisingly, led to a global acceleration in mRNA decay. To further investigate the role of CCR4-NOT in transcription, we used transient transcriptome sequencing (TT-seq) to measure ongoing RNA synthesis. Depletion of either subunit resulted in increased RNA synthesis of several thousand genes. In contrast to most of the genome, a rapid reduction in the synthesis of KRAB-Zinc-Finger-proteins (KZNFs) genes, especially those clustered on chromosome 19, was observed. KZNFs are transcriptional repressors of retro-transposable elements (rTEs), and consistent with the decreased KZNFs expression, we observed a significant and rapid activation of rTEs, mainly Long interspersed Nuclear Elements (LINEs). Our data reveal that CCR4-NOT regulates gene expression and silences retrotransposons across the genome by maintaining KZNF expression. These data establish CCR4-NOT as a global regulator of gene expression, and we have identified a novel mammalian-specific function of the complex, the suppression of rTEs.
Read full abstract