In recent years, exergy analysis has been widely used in the design, operation, and performance assessment of various thermal systems, among which drying, which is an energy intensive operation, is of a great importance. In the ceramic industry, it is aimed at utilizing a minimum amount of energy in order to remove the maximum moisture for the desired final conditions of the product to be dried. In this study, energy and exergy analyses of a ceramic plant, located in Izmir, Turkey, with a yearly production capacity of 24 million m2 were performed using the actual operational data over a period of 12 months. The drying system at the three stages was analyzed and the values for exergy destruction and efficiency for each component of the system and the whole system at a reference (dead state) temperature of 22°C were calculated. For the month of January, energy and exergy efficiencies for the spray dryer (SD) were determined to be 65.50 and 53.7%, respectively. Energy and exergy efficiency values of the vertical dryer (VD) were 45.12 and 43.3%, respectively, and those of the furnace (F) were 35.08 and 16%, respectively. Based on this one-year assessment, the energy efficiency values for the SD, VD, and F varied between 58.48 and 65.50%, 42.44 and 50.87%, and 30.44 and 36.99%, and the exergy efficiency values were in the range of 44.85–65.16%, 34.92–45.42%, and 12.73–16.41%, respectively.
Read full abstract