The burgeoning interest in all-solid-state Zn-air batteries as next-generation power sources for portable electronics is conspicuous. A pivotal aspect of their advancement lies in developing cost-effective, metal-free air electrodes with high-activity bifunctional oxygen electrocatalysts. This study introduces a superhydrophilic carbon fiber modified with oxygen functional groups (CF-O), achieved through a straightforward one-step activation treatment. Comparative analyses reveal that the CF-O electrode surpasses pristine CF in oxygen reduction and evolution reaction (OER and ORR) activity due to enhanced active sites and expedited ion transport. Notably, the OER/ORR performance depends on the type and quantity of oxygen functional groups. The optimal CF-O electrode displays an OER overpotential of 365.6 mV at 10 mA cm-2 and an ORR peak potential of 0.683 V. Utilizing the CF-O sample as the air electrode in all-solid-state Zn-air batteries yields an open-circuit voltage of 1.28 V and a peak volume power density of 82.8 mW cm-3. Furthermore, endurance testing reveals a charge/discharge voltage gap of 1.07 V at a current density of 1.0 mA cm-2 after 30 cycles. This facile and economical fabrication approach for metal-free air electrodes holds promise for advancing high-performance metal-air batteries compared to various existing techniques.
Read full abstract