Prolonged cerebral hypothermia is neuroprotective if started within a few hours of hypoxia-ischemia. However, delayed seizure activity is one of the major clinical indicators of an adverse prognosis after perinatal asphyxia. The aim of this study was to determine whether head cooling delayed until after the onset of postasphyxial seizures may still be neuroprotective. Unanesthetized near-term fetal sheep in utero received 30 min of cerebral ischemia induced by bilateral carotid artery occlusion. Eight and one-half hours later, they received either cooling (n = 5) or sham cooling (n = 13) until 72 h after the insult. Intrauterine cooling, induced by circulating cold water through a coil around the fetal head, was titrated to reduce fetal extradural temperature from 39.4+/-0.1 degrees C to between 30 and 33 degrees C. Cerebral ischemia led to the delayed development of intense epileptiform activity from 6 to 8 h postinsult, followed by a marked secondary rise in cortical impedance (a measure of cytotoxic edema) and in carotid blood flow. Cerebral cooling markedly attenuated the secondary rise in impedance and reduced carotid blood flow (p < 0.001). After 5 d recovery, there was no significant difference in loss of parietal EEG activity relative to baseline in the hypothermia compared with the control group (-12.5+/-1.4 versus -15.2+/-1.2 dB, mean +/- SEM, NS) or in parasagittal cortical neuronal loss (82+/-9 versus 90+/-5%, NS). In conclusion, delayed prolonged head cooling begun after the onset of postischemic seizures was not neuroprotective. These data highlight the importance of intervention in the latent phase, after reperfusion but before the onset of secondary injury.
Read full abstract