We consider a gas mixture consisting of spinless fermions and bosons in one dimension interacting via a repulsive [Formula: see text]-function potential. Bosons and fermions are assumed to have equal masses and the interaction strength between bosons and among bosons and fermions is the same. Using the Bethe ansatz solution of the model, we study the ground state properties, the dressed energy potentials for the two bands of rapidities, the elementary particle and hole excitations, the thermodynamics, the finite size corrections to the ground state energy leading to the conformal towers, and the asymptotic behavior at large distances of some relevant correlation functions. The low-energy excitations of the system form a two-component Luttinger liquid. In an elongated optical trap the gas phase separates as a function of the distance from the center of the trap.
Read full abstract