In this paper, a theoretical study on the case of reflection-type one-dimensional magnetophotonic crystals (MPCs) has been carried out to establish high performance structures having concurrent high reflectance and large Kerr rotation with flat-top responses. The introduced MPCs are able to maintain their flat-top responses in a wide range of incident angle. For practical purposes, we have also inquired the influence of the error in the thickness of individual layers on the operational parameters of the MPCs. The reflectance flatness and bandwidth of the MPCs are appreciably stable against the imposed thickness errors.