This paper presents the development of an airport bipolar DC microgrid and its interconnected operations with the utility grid, electric vehicle (EV), and more electric aircraft (MEA). The microgrid DC-bus voltage is established by the main sources, photovoltaic (PV) and fuel cell (FC), via unidirectional three-level (3L) boost converters. The proposed one-cycle control (OCC)-based current control scheme and quantitative and robust voltage control scheme are proposed to yield satisfactory responses. Moreover, the PV maximum power point tracking (MPPT) with FC energy-supporting approach is developed to have improved renewable energy extraction characteristics. The equipped hybrid energy storage system (HESS) consists of an energy-type battery and a power-type flywheel; each device is interfaced to the common DC bus via its own 3L bidirectional interface converter. The energy-coordinated operation is achieved by the proposed droop control. A dump load leg is added to avoid overvoltage due to an energy surplus. The grid-connected energy complementary operation is conducted using a neutral point clamped (NPC) 3L three-phase inverter. In addition to the energy support from grid-to-microgrid (G2M), the reverse mcrogrid-to-grid (M2G) operation is also conductible. Moreover, microgrid-to-vehicle (M2V) and vehicle-to-microgrid (V2M) bidirectional operations can also be applicable. The droop control is also applied to perform these interconnected operations. For the grounded aircraft, bidirectional microgrid-to-aircraft (M2A)/aircraft-to-microgrid (A2M) operations can be performed. The aircraft ground power unit (GPU) function can be preserved by the developed microgrid. The MEA on-board facilities can be powered by the microgrid, including the 115 V/400 Hz AC bus, the 270 V DC bus, the switched-reluctance motor (SRM) drive, etc.