Video surveillance applications need video data center to provide elastic virtual machine (VM) provisioning. However, the workloads of the VMs are hardly to be predicted for online video surveillance service. The unknown arrival workloads easily lead to workload skew among VMs. In this paper, we study how to balance the workload skew on online video surveillance system. First, we design the system framework for online surveillance service which consists of video capturing and analysis tasks. Second, we propose StreamTune, an online resource scheduling approach for workload balancing, to deal with irregular video analysis workload with the minimum number of VMs. We aim at timely balancing the workload skew on video analyzers without depending on any workload prediction method. Furthermore, we evaluate the performance of the proposed approach using a traffic surveillance application. The experimental results show that our approach is well adaptive to the variation of workload and achieves workload balance with less VMs.
Read full abstract