High-definition (HD) maps aim to provide detailed road information with centimeter-level accuracy, essential for enabling precise navigation and safe operation of autonomous vehicles (AVs). Traditional offline construction methods involve several complex steps, such as data collection, point cloud generation, and feature extraction, but these methods are resource-intensive and struggle to keep pace with the rapidly changing road environments. In contrast, online HD map construction leverages onboard sensor data to dynamically generate local HD maps, offering a bird’s-eye view (BEV) representation of the surrounding road environment. This approach has the potential to improve adaptability to spatial and temporal changes in road conditions while enhancing cost-efficiency by reducing the dependency on frequent map updates and expensive survey fleets. This survey provides a comprehensive analysis of online HD map construction, including the task background, high-level motivations, research methodology, key advancements, existing challenges, and future trends. We systematically review the latest advancements in three key sub-tasks: map segmentation, map element detection, and lane graph construction, aiming to bridge gaps in the current literature. We also discuss existing challenges and future trends, covering standardized map representation design, multitask learning, and multi-modality fusion, while offering suggestions for potential improvements.
Read full abstract