IntroductionTraumatic optic neuropathy is known to be a critical condition that can cause blindness; however, the specific mechanism underlying optic nerve injury is unclear. Recent studies have reported that artemisinin, considered vital in malaria treatment, can also be used to treat neurodegenerative diseases; however, its precise role and mechanism of action remain unknown. Therefore, in this study, we aimed to investigate the impact and probable mechanism of action of artemisinin in retinal ganglion cells (RGCs) in a mouse model of traumatic optic neuropathy induced by optic nerve crush (ONC). MethodsONC was induced in the left eye of mice by short-term clamping of the optic nerve; oral artemisinin was administered daily. The neuroprotective effect of the drug was assessed using Tuj-1 staining in RGCs. In addition, the inflammatory response and the expression levels of phosphorylated tau protein and tau oligomers were observed using RT-qPCR, TUNEL assay, and fluorescence staining to investigate the underlying mechanisms. ResultsArtemisinin increased the survival rate of RGCs 14 days after ONC. Artemisinin significantly reduced the levels of inflammatory factors such as CXCL10, CXCR3, and IL-1β in the retina and decreased the apoptosis of RGCs. Moreover, downregulation of the phosphorylation of tau proteins and the expression of tau oligomers were observed after artemisinin treatment. ConclusionOur results suggest that artemisinin can increase the survival rate of RGCs after ONC and reduce their apoptosis. This effect may be achieved by inhibiting the inflammatory response it triggers and downregulating tau protein phosphorylation and tau oligomer expression. These findings suggest the potential application of artemisinin as a therapeutic agent for neuropathy.