Olfactory dysfunction (OD) is a frequent symptom of Parkinson's disease (PD) that appears years prior to diagnosis. Previous studies suggest that PD-related OD is different from non-parkinsonian forms of olfactory dysfunction (NPOD) as PD patients maintain trigeminal sensitivity as opposed to patients with NPOD who typically exhibit reduced trigeminal sensitivity. We hypothesize the presence of a specific alteration of functional connectivity between trigeminal and olfactory processing areas in PD. We aimed to assess potential differences in functional connectivity within the chemosensory network in 15 PD patients and compared them to 15 NPOD patients, and to 15 controls. Functional MRI scanning session included resting-state and task-related scans where participants carried out an olfactory and a trigeminal task. We compared functional connectivity, using a seed-based correlation approach, and brain network modularity of the chemosensory network. PD patients had impaired functional connectivity within the chemosensory network while no such changes were observed for NPOD patients. No group differences we found in modularity of the identified networks. Both patient groups exhibited impaired connectivity when executing an olfactory task, while network modularity was significantly weaker for PD patients than both other groups. When performing a trigeminal task, no changes were found for PD patients, but NPOD patients exhibited impaired connectivity. Conversely, PD patients exhibited a significantly higher network modularity than both other groups. In summary, the specific pattern of functional connectivity and chemosensory network recruitment in PD-related OD may explain distinct behavioral chemosensory features in PD when compared to NPOD patients and healthy controls.