BackgroundSubjective cognitive decline (SCD) is a putative Alzheimer’s disease (AD) precursor without objective neuropsychological deficits. The hippocampus plays an important role in cognitive function and emotional responses and is generally aberrant in SCD. However, previous studies have mainly focused on static functional connectivity (sFC) by resting-state functional magnetic resonance imaging (fMRI) in SCD individuals, and it remains unclear whether hippocampal dynamic functional connectivity (dFC) changes exist in SCD and whether those changes are associated with subtle changes in cognitive function or affect.MethodsSeventy SCD patients and 65 healthy controls were recruited. Demographic data, comprehensive neuropsychology assessments, and resting-state fMRI data were collected. The bilateral anterior and posterior hippocampi were selected as seeds to investigate the static and dynamic functional connectivity alterations in SCD.ResultsCompared to healthy controls, subjects with SCD exhibited: (1) decreased sFC between the left caudal hippocampus and left precuneus; (2) decreased dFC variability between the bilateral caudal hippocampus and precuneus; (3) increased dFC variability between the bilateral rostral hippocampus and caudate nucleus; and (4) increased dFC variability between the left rostral hippocampus and left olfactory cortex. Additionally, the attention scores were positively correlated with dFC variability between the left posterior hippocampus and left precuneus, and the dFC variability between the bilateral anterior hippocampus and caudate nucleus was positively correlated with depression scores and negatively correlated with global cognition scores.ConclusionSCD individuals exhibited abnormal sFC and dFC in the anterior-posterior hippocampus, and abnormal dFC was more widespread than abnormal sFC. A combination of sFC and dFC provides a new perspective for exploring the brain pathophysiological mechanisms in SCD and offers potential neuroimaging biomarkers for the early diagnosis and intervention of AD.