Studies indicate that Syzygium spp-derived oleanolic acid (OA) enhances renal function of streptozotocin (STZ)-induced diabetic rats as evidenced by its reversal of the previously reported inability of the kidney to excrete Na+ in these animals. We postulated that OA influences Na+ excretion in the proximal tubule, the site where two-thirds of filtered NaCl is reabsorbed through a process mediated by transport proteins. Therefore, the study investigated the effects of OA on proximal tubular Na+ handling in male Sprague–Dawley rats using renal lithium clearance (CLi). Renal CLi has been used widely in animal and clinical studies to assess proximal tubular function. Sub-chronic doses of OA were administered to rats twice every third day for 5 weeks. Rats treated with deionized water served as control animals. Cytotoxicity of OA on kidney and liver cell lines was assessed by the MTT and comet assays. OA increased Na+ excretion of conscious male Sprague–Dawley rats from week 3 to week 5. By the end of the 5-week experimental period, OA treatment significantly reduced (p < 0.05) plasma creatinine concentration of STZ-induced diabetic rats with a concomitant elevation in glomerular filtration rate (GFR). Acute OA infusion was also associated with increases in fractional excretion of sodium (FENa) and lithium (FELi) in anesthetized rats in the absence of significant changes in GFR. The MTT assay studies demonstrated that OA increased the metabolic activity of kidney and liver cell lines. Taken together with previous observations, this study implicates the proximal tubule in OA-evoked increases in urinary Na+ output.
Read full abstract