BackgroundVernonia galamensis native to Africa is an annual oleaginous plant of Asteraceae family. As a newly established industrial oil crop, this plant produces high level (> 70%) of vernolic acid (cis-12-epoxyoctadeca-cis-9-enoic acid), which is an unusual epoxy fatty acid (EFA) with multiple industrial applications. Here, transcriptome analysis and fatty acid profiling from developing V. galamensis seeds were integrated to uncover the critical metabolic pathways responsible for high EFA accumulation, aiming to identify the target genes that could be used in the biotechnological production of high-value oils.ResultsBased on oil accumulation dynamics of V. galamensis seeds, we harvested seed samples from three stages (17, 38, and 45 days after pollination, DAP) representing the initial, fast and final EFA accumulation phases, and one mixed sample from different tissues for RNA-sequencing, with three biological replicates for each sample. Using Illumina platform, we have generated a total of 265 million raw cDNA reads. After filtering process, de novo assembly of clean reads yielded 67,114 unigenes with an N50 length of 1316 nt. Functional annotation resulted in the identification of almost all genes involved in diverse lipid-metabolic pathways, including the novel fatty acid desaturase/epoxygenase, diacylglycerol acyltransferases, and phospholipid:diacylglycerol acyltransferases. Expression profiling revealed that various genes associated with acyl editing, fatty acid β-oxidation, triacylglycerol assembly and oil-body formation had greater expression levels at middle developmental stage (38 DAP), which were consistent with the fast accumulation of EFA in V. galamensis developing seed, these genes were detected to play fundamental roles in EFA production. In addition, we isolated some transcription factors (such as WRI1, FUS3 and ABI4), which putatively regulated the production of V. galamensis seed oils. The transient expression of the selected genes resulted in a synergistic increase of EFA-enriched TAG accumulation in tobacco leaves. Transcriptome data were further confirmed by quantitative real-time PCR for twelve key genes in EFA biosynthesis. Finally, a comprehensive network for high EFA accumulation in V. galamensis seed was established.ConclusionsOur findings provide new insights into molecular mechanisms underlying the natural epoxy oil production in V. galamensis. A set of genes identified here could be used as the targets to develop other oilseeds highly accumulating valued epoxy oils for commercial production.
Read full abstract