BRCA1 is one of the causative genes for hereditary breast and ovarian cancer syndrome with a high risk of early-onset breast cancer. Whereas olaparib (OLA), an inhibitor of poly-ADP-ribose polymerase, has been applied as adjuvant therapy to those cancer patients, its effect on ovarian reproductive function remains unelucidated. Recently, a rat model (MUT; Brca1(L63X/+) mutation) mimicking a human BRCA1 pathogenic variant has been established. Using this model, we evaluated the effects of OLA on ovarian reproductive function in comparison with the wild-type (WT) rats. MUT showed a significantly reduced number of primordial follicles and subfertility in accordance with aging. Oxidative stress was significantly elevated in the young MUT granulosa cells (GCs) accompanied by increased mTOR but decreased PTEN signals. OLA administration in MUT further decreased primordial follicles, with gene set enrichment analysis, indicating upregulated DNA repair pathways. Furthermore, a combination of OLA and cyclophosphamide (CPA) induced empty primordial follicles, recognized as CPA-induced severe ovarian toxicity. Whereas OLA + CPA caused greater reduction in primordial follicles both in MUT and WT in comparison with CPA alone, MUT ovaries were more susceptible to oxidative stress, potentially depleting primordial follicles via activation of GCs and inducing oocyte death due to accumulated DNA damage by OLA treatment. Our findings in this preclinical model underscore the importance of evaluating ovarian reserve prior to chemotherapy by performing reproductive consultation with female patients with BRCA1 pathogenic variants.
Read full abstract