We examined the ability of FTY720, a novel immunosuppressant that prolongs the survival of allografts in experimental animal models, to potentiate the immunosuppressive effects of cyclosporine (CsA) and/or sirolimus (SRL) in vitro and in vivo. FTY720 alone (10-5000 ng/ml) or in combination with other drugs was added to human peripheral blood lymphocytes (PBLs) undergoing stimulation in vitro with phytohemagglutinin (PHA) or OKT3 monoclonal antibody. The combination index (CI) values were calculated to evaluate the nature of the interactions between FTY720 and CsA and/or SRL: CI values <1 reflect synergistic, CI=1, additive, and CI>1, antagonistic interactions. In addition, Wistar Furth (RT1u) rat recipients of Buffalo (RT1b) heart allografts were treated with FTY720 alone or in combination with other agents. FTY720 alone was also tested to block small bowel or liver allograft rejection in rats. FTY720 alone produced only modest inhibition of the proliferation of human PBL stimulated with PHA or OKT3 monoclonal antibody. In combination with CsA or SRL, however, FTY720 produced synergistic effects, namely, CI values of 0.58 and 0.36, respectively. A 14-day course of FTY720 (0.05-8.0 mg/kg/day) by oral gavage prolonged heart allograft survival in dose-dependent fashion. Although a 14-day oral course of CsA (1.0 mg/kg/day) alone was ineffective (mean survival time=7.0+/-0.7 vs. 6.4+/-0.6 days in treated vs. untreated hosts), treatment with a combination of 1.0 mg/kg/day CsA and 0.1 mg/kg/day FTY720 extended allograft survival to 62.4+/-15.6 days (P<0.001; CI=0.15). Similarly, a 14-day oral course of 0.08 mg(kg/day SRL alone was ineffective (6.8+/-0.6 days; NS), but the combination of SRL with 0.5 mg/kg/day FTY720 extended the mean survival time to 34.4+/-8.8 days (CI=0.28). The CsA/SRL (0.5/0.08 mg/kg/day) combination acted synergistically with FTY720 (0.1 mg/kg/day) to prolong heart survivals to >60 days (CI=0.18). FTY720 potentiates the immunosuppressive effects of CsA and/or SRL both in vitro (by inhibiting of T-cell proliferative response) and in vivo (by inhibiting allograft rejection).