The dike belt and separate intrusive bodies of the Abdar–Khoshutula series were formed in the NE-trending linear zone, southwest of the Daurian–Khentei batholith, in the peripheral part of the Early Mesozoic magmatic area, on the western termination of the Mongol–Okhotsk belt. The granitoids of this series are subdivided into following geochemical types: anatectic granitoids of the calc-alkaline and subalkaline series, alkaline rocks, and plumasite rare-metal leucogranites (Li–F granites). The entire series was formed within approximately 12–15 Ma. Its geochemical evolution follows two trends, which correspond to two stages of the granitoid magmatism. The early stage was responsible for the formation of granitoids of two phases of the Khoshutulinsky Pluton and alkaline syenites with similar trace element distribution patterns. However, syenites, as agpaitic rocks, are significantly enriched in Ba, Zr, and Hf. The late stage of the intrusive- dike series resulted in the formation of the dike belt and Abdar Massif of rare-metal granites. These rocks show enrichment in Li, Rb, Cs, Nb, Ta, Sn, and Y, and deep negative anomalies of Ba, Sr, La, and Ce, which are best expressed in the late amazonite–albite granites of the Abdar intrusion and ongonites of the dike belt. The intrusive-dike series in the magmatic areas of different age of Mongolia and Baikal region are characterized by the wide compositional variations, serve as important indicators of mantle-crustal interaction and differentiation of granitoid magmas, and could highlight the nature of zonal areas within the Central Asian Fold Belt. Obtained geochemical data indicate a potential opportunity to concentrate trace and ore components during long-term evolution of the intrusive-subvolcanic complexes, which could be indicators of the evolution of the ore-magmatic systems bearing rare-metal mineralization.
Read full abstract