In order to overcome the technical challenges of poor stability and weak antibacterial effects of individual essential oil in food preservation applications, the present study aimed to encapsulate cinnamon and clove essential oil compound by using spray-drying technique. The combination of cinnamon and clove essential oils was determined to have good synergistic bacteriostatic effects by the checkerboard dilution method, and the best bacteriostatic effect could be obtained when the volume ratio was 7:3 for compounding. Microcapsules were prepared using hydroxypropyl-β-cyclodextrin (HPCD) as wall material and compound essential oil as core material, the optimal conditions for the microcapsule preparation process through a one-way test were: homogenizing speed of 8000r/min, wall material addition of 2%, HPCD to EO ratio of 1:3, EO to T-80 ratio of 1.5:1, and homogenizing time of 8min. The physicochemical properties of the prepared compound essential oil microcapsules (EOM) were characterized, and the results showed that the EOM was successfully encapsulated in HPCD with good physicochemical properties, and the encapsulation rate of the prepared microcapsules was measured to be 65.82±4.00%. The thermal stability of the encapsulated EOM was improved, and volatilization of the essential oils was effectively inhibited. In addition, the EOM showed antibacterial activity against the five types of bacteria tested, and the number of surviving bacteria decreased by about 17-18% after 72h. The preservation experiment of low salt pickles showed that the EOM was more effective in maintaining the quality and prolonging the shelf life of the pickles compared with commercial sodium benzoate, which also demonstrated the potential application of EOM in preserving low-salt pickles. This study provides a feasible and new technical strategy for more effective application of plant essential oils in food preservation.
Read full abstract