This study presents updated chemical, thermodynamic, and activity models for the system U4+–Na+–Mg2+–Ca2+–H+–Cl––OH––H2O(l) derived using the Pitzer formalism and a strict ion interaction approach. The models build on comprehensive solubility datasets in dilute to concentrated NaCl, MgCl2, and CaCl2 solutions. The Nuclear Energy Agency-Thermochemical Database (NEA-TDB) selection of solubility and hydrolysis constants in the reference state were taken as anchoring point, and were extended further with the solid nanocrystalline phase UO2∙H2O(ncr) and the ternary complex Ca4[U(OH)8]4+. The former was identified in long-term solubility experiments at ambient conditions, whereas the latter has been selected in analogy to Th(IV), Np(IV), and Pu(IV) considering experimental evidences available for these An(IV) in alkaline, concentrated CaCl2 solutions. These models represent an improved tool for the calculation of U(IV) solubility and aqueous speciation in a variety of geochemical conditions including concentrated brine systems relevant in salt-based repositories for nuclear waste disposal.