We have systematically investigated the resistive switching and electroresistance behavior in Pt-[NiO-Al2O3]-Pt (PNAP) capacitor-like structures. The PNAP devices show a large ON-OFF ratio (∼107), which is strongly dependent on the rate of the voltage sweep. Interestingly, the devices exhibit a robust electroresistance behavior in the high resistance OFF state and show an intriguing change of sign of rectification with increasing end voltage. Our direct measurement of the surface temperature of the sample during resistive switching indicates that RESET process is assisted by Joule heating effects. The results are explained on the basis of plausible interplay between Schottky barrier modification due to the trapped charge carriers at the metal–oxide interface and percolation effects of conducting nanofilaments.
Read full abstract