Aiming at valorizing the ricotta cheese exhausted whey (RCEW), one of the most abundant by-products from the dairy industry, a biotechnological protocol to obtain bioactive peptides with angiotensin-I-converting enzyme (ACE)—inhibitory activity was set up. The approach was based on the combination of membrane filtration and fermentation. A Lactobacillus helveticus strain selected to be used as starter for the fermentation of the ultrafiltration protein-rich retentate (R-UF) obtained from RCEW. The fermented R-UF was characterized by a high anti-ACE activity. Peptides responsible for the bioactivity were purified and identified through nano-LC–ESI–MS/MS. The sequences identified in the purified active fractions of the fermented R-UF showed partial or complete overlapping with previously reported κ-casein antihypertensive fragments. The fermented R-UF was spray-dried and used to enrich ricotta cheese at different fortification level (1 and 5% w/w). An integrated approach including the assessment of the microbiological, chemical, functional, textural, and sensory properties was used to characterize the fortified products. A significantly higher anti-ACE activity was found in the ricotta cheese fortified with fermented R-UF as compared to the control and to the samples obtained with the unfermented R-UF fraction at the same levels of fortification. In particular, a 100 g portion of the ricotta cheese produced at 5% fortification level contained circa 30 mg of bioactive peptides. The fortification led to a moderate acidification, increased hardness and chewiness, and decreased the milk odor and taste of the ricotta cheese as compared to the control, while flavor persistence and sapidity improved.