Particulate matter (PM) is an environmental hazard that is associated with various human health risks. The olfactory system is directly exposed to PM; therefore, the influence of PM exposure on olfactory function must be investigated. In this study, we propose a zebrafish olfactory model to evaluate the effects of exposure to diesel particulate matter (DPM), which was labeled Korean diesel particulate matter (KDP20). KDP20 comprises heavy metals and polycyclic aromatic hydrocarbons (PAHs). KDP20 exposed olfactory organs exhibited reduced cilia and damaged epithelium. Olfactory dysfunction was confirmed using an odor-mediated behavior test. Furthermore, the olfactory damage was analyzed using Alcian blue and anti-calretinin staining. KDP20 exposed olfactory organs exhibited histological damages, such as increased goblet cells, decreased cell density, and calretinin level. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that PAHs exposure related genes (AHR2 and CYP1A) were upregulated. Reactive oxidation stress (ROS) (CAT) and inflammation (IL-1B) related genes were upregulated. Furthermore, olfactory sensory neuron (OSN) related genes (OMP and S100) were downregulated. In conclusion, KDP20 exposure induced dysfunction of the olfactory system. Additionally, the zebrafish olfactory system exhibited a regenerative capacity with recovery conditions. Thus, this model may be used in future investigating PM-related diseases.
Read full abstract