Abstract Study Objectives Obstructive sleep apnea (OSA) increases the risk of cognitive impairment. Measures of sleep microarchitecture from EEG may help identify patients at risk of this complication. Methods Participants with suspected OSA (n = 1142) underwent in-laboratory polysomnography and completed sleep and medical history questionnaires, and tests of global cognition (Montreal Cognitive Assessment, MoCA), memory (Rey Auditory Verbal Learning Test, RAVLT) and information processing speed (Digit–Symbol Coding, DSC). Associations between cognitive scores and stage 2 non-rapid eye movement (NREM) sleep spindle density, power, frequency and %-fast (12–16Hz), odds-ratio product (ORP), normalized EEG power (EEGNP), and the delta:alpha ratio were assessed using multivariable linear regression (MLR) adjusted for age, sex, education, and total sleep time. Mediation analyses were performed to determine if sleep microarchitecture indices mediate the negative effect of OSA on cognition. Results All spindle characteristics were lower in participants with moderate and severe OSA (p ≤ .001, vs. no/mild OSA) and positively associated with MoCA, RAVLT, and DSC scores (false discovery rate corrected p-value, q ≤ 0.026), except spindle power which was not associated with RAVLT (q = 0.185). ORP during NREM sleep (ORPNREM) was highest in severe OSA participants (p ≤ .001) but neither ORPNREM (q ≥ 0.230) nor the delta:alpha ratio were associated with cognitive scores in MLR analyses (q ≥ 0.166). In mediation analyses, spindle density and EEGNP (p ≥ .048) mediated moderate-to-severe OSA’s negative effect on MoCA scores while ORPNREM, spindle power, and %-fast spindles mediated OSA’s negative effect on DSC scores (p ≤ .018). Conclusions Altered spindle activity, ORP and normalized EEG power may be important contributors to cognitive deficits in patients with OSA.
Read full abstract