Cobalt is a potential substitute for copper as local interconnects in sub-10 nm interconnects, the chemical mechanical polishing (CMP) of which is quite challenging due to the high chemical reactivity of Co. By using a combination of experiments and theoretical calculations, the optimum corrosion inhibitor of Co is identified and the corrosion inhibition mechanism of TTLYK on Co is further investigated. It investigates the effects of various corrosion inhibitors, including potassium oleate, dodecyl benzene sulphonic acid, octyl hydroxamic acid, and 2,2′-[[(methyl-1H-benzotriazol-1yl) methyl] imino] bis-ethanol (TTLYK) on Co through chemical mechanical polishing and static etching experiments. The results show that among various corrosion inhibitors, TTLYK presents the best corrosion inhibition effect. When the basic slurry contains 10 mM TTLYK, the corrosion inhibition efficiency could reach 96.23 %, the material removal rates of Co is 161.79 nm/min, the static etching rates is 0.85 nm/min, and the material removal selectivity ratio of Co and Ti is 39:1. The results fully meet the requirements of the Co bulk CMP process. It is revealed TTLYK could form a protective layer with a synergistic physical and chemical adsorption on Co, in which the chemical adsorption occurs through the formation of CoN bonds. The adsorption of TTLYK could decelerate the transformation of CoO and Co(OH)2 to Co3O4, and the as formed Co-TTLYK complex provides the main corrosion inhibition.
Read full abstract